\(\int \frac {1}{\sqrt {a+b x^2} (c+d x^2)^3} \, dx\) [80]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [B] (verification not implemented)
   Sympy [F(-1)]
   Maxima [F]
   Giac [B] (verification not implemented)
   Mupad [F(-1)]

Optimal result

Integrand size = 21, antiderivative size = 163 \[ \int \frac {1}{\sqrt {a+b x^2} \left (c+d x^2\right )^3} \, dx=-\frac {d x \sqrt {a+b x^2}}{4 c (b c-a d) \left (c+d x^2\right )^2}-\frac {3 d (2 b c-a d) x \sqrt {a+b x^2}}{8 c^2 (b c-a d)^2 \left (c+d x^2\right )}+\frac {\left (8 b^2 c^2-8 a b c d+3 a^2 d^2\right ) \text {arctanh}\left (\frac {\sqrt {b c-a d} x}{\sqrt {c} \sqrt {a+b x^2}}\right )}{8 c^{5/2} (b c-a d)^{5/2}} \]

[Out]

1/8*(3*a^2*d^2-8*a*b*c*d+8*b^2*c^2)*arctanh(x*(-a*d+b*c)^(1/2)/c^(1/2)/(b*x^2+a)^(1/2))/c^(5/2)/(-a*d+b*c)^(5/
2)-1/4*d*x*(b*x^2+a)^(1/2)/c/(-a*d+b*c)/(d*x^2+c)^2-3/8*d*(-a*d+2*b*c)*x*(b*x^2+a)^(1/2)/c^2/(-a*d+b*c)^2/(d*x
^2+c)

Rubi [A] (verified)

Time = 0.10 (sec) , antiderivative size = 163, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.238, Rules used = {425, 541, 12, 385, 214} \[ \int \frac {1}{\sqrt {a+b x^2} \left (c+d x^2\right )^3} \, dx=\frac {\left (3 a^2 d^2-8 a b c d+8 b^2 c^2\right ) \text {arctanh}\left (\frac {x \sqrt {b c-a d}}{\sqrt {c} \sqrt {a+b x^2}}\right )}{8 c^{5/2} (b c-a d)^{5/2}}-\frac {3 d x \sqrt {a+b x^2} (2 b c-a d)}{8 c^2 \left (c+d x^2\right ) (b c-a d)^2}-\frac {d x \sqrt {a+b x^2}}{4 c \left (c+d x^2\right )^2 (b c-a d)} \]

[In]

Int[1/(Sqrt[a + b*x^2]*(c + d*x^2)^3),x]

[Out]

-1/4*(d*x*Sqrt[a + b*x^2])/(c*(b*c - a*d)*(c + d*x^2)^2) - (3*d*(2*b*c - a*d)*x*Sqrt[a + b*x^2])/(8*c^2*(b*c -
 a*d)^2*(c + d*x^2)) + ((8*b^2*c^2 - 8*a*b*c*d + 3*a^2*d^2)*ArcTanh[(Sqrt[b*c - a*d]*x)/(Sqrt[c]*Sqrt[a + b*x^
2])])/(8*c^(5/2)*(b*c - a*d)^(5/2))

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 385

Int[((a_) + (b_.)*(x_)^(n_))^(p_)/((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Subst[Int[1/(c - (b*c - a*d)*x^n), x]
, x, x/(a + b*x^n)^(1/n)] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && EqQ[n*p + 1, 0] && IntegerQ[n]

Rule 425

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[(-b)*x*(a + b*x^n)^(p + 1)*
((c + d*x^n)^(q + 1)/(a*n*(p + 1)*(b*c - a*d))), x] + Dist[1/(a*n*(p + 1)*(b*c - a*d)), Int[(a + b*x^n)^(p + 1
)*(c + d*x^n)^q*Simp[b*c + n*(p + 1)*(b*c - a*d) + d*b*(n*(p + q + 2) + 1)*x^n, x], x], x] /; FreeQ[{a, b, c,
d, n, q}, x] && NeQ[b*c - a*d, 0] && LtQ[p, -1] &&  !( !IntegerQ[p] && IntegerQ[q] && LtQ[q, -1]) && IntBinomi
alQ[a, b, c, d, n, p, q, x]

Rule 541

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_.)*((e_) + (f_.)*(x_)^(n_)), x_Symbol] :> Simp[(
-(b*e - a*f))*x*(a + b*x^n)^(p + 1)*((c + d*x^n)^(q + 1)/(a*n*(b*c - a*d)*(p + 1))), x] + Dist[1/(a*n*(b*c - a
*d)*(p + 1)), Int[(a + b*x^n)^(p + 1)*(c + d*x^n)^q*Simp[c*(b*e - a*f) + e*n*(b*c - a*d)*(p + 1) + d*(b*e - a*
f)*(n*(p + q + 2) + 1)*x^n, x], x], x] /; FreeQ[{a, b, c, d, e, f, n, q}, x] && LtQ[p, -1]

Rubi steps \begin{align*} \text {integral}& = -\frac {d x \sqrt {a+b x^2}}{4 c (b c-a d) \left (c+d x^2\right )^2}+\frac {\int \frac {4 b c-3 a d-2 b d x^2}{\sqrt {a+b x^2} \left (c+d x^2\right )^2} \, dx}{4 c (b c-a d)} \\ & = -\frac {d x \sqrt {a+b x^2}}{4 c (b c-a d) \left (c+d x^2\right )^2}-\frac {3 d (2 b c-a d) x \sqrt {a+b x^2}}{8 c^2 (b c-a d)^2 \left (c+d x^2\right )}+\frac {\int \frac {8 b^2 c^2-8 a b c d+3 a^2 d^2}{\sqrt {a+b x^2} \left (c+d x^2\right )} \, dx}{8 c^2 (b c-a d)^2} \\ & = -\frac {d x \sqrt {a+b x^2}}{4 c (b c-a d) \left (c+d x^2\right )^2}-\frac {3 d (2 b c-a d) x \sqrt {a+b x^2}}{8 c^2 (b c-a d)^2 \left (c+d x^2\right )}+\frac {\left (8 b^2 c^2-8 a b c d+3 a^2 d^2\right ) \int \frac {1}{\sqrt {a+b x^2} \left (c+d x^2\right )} \, dx}{8 c^2 (b c-a d)^2} \\ & = -\frac {d x \sqrt {a+b x^2}}{4 c (b c-a d) \left (c+d x^2\right )^2}-\frac {3 d (2 b c-a d) x \sqrt {a+b x^2}}{8 c^2 (b c-a d)^2 \left (c+d x^2\right )}+\frac {\left (8 b^2 c^2-8 a b c d+3 a^2 d^2\right ) \text {Subst}\left (\int \frac {1}{c-(b c-a d) x^2} \, dx,x,\frac {x}{\sqrt {a+b x^2}}\right )}{8 c^2 (b c-a d)^2} \\ & = -\frac {d x \sqrt {a+b x^2}}{4 c (b c-a d) \left (c+d x^2\right )^2}-\frac {3 d (2 b c-a d) x \sqrt {a+b x^2}}{8 c^2 (b c-a d)^2 \left (c+d x^2\right )}+\frac {\left (8 b^2 c^2-8 a b c d+3 a^2 d^2\right ) \tanh ^{-1}\left (\frac {\sqrt {b c-a d} x}{\sqrt {c} \sqrt {a+b x^2}}\right )}{8 c^{5/2} (b c-a d)^{5/2}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.66 (sec) , antiderivative size = 160, normalized size of antiderivative = 0.98 \[ \int \frac {1}{\sqrt {a+b x^2} \left (c+d x^2\right )^3} \, dx=\frac {d x \sqrt {a+b x^2} \left (-2 b c \left (4 c+3 d x^2\right )+a d \left (5 c+3 d x^2\right )\right )}{8 c^2 (b c-a d)^2 \left (c+d x^2\right )^2}-\frac {\left (8 b^2 c^2-8 a b c d+3 a^2 d^2\right ) \arctan \left (\frac {-d x \sqrt {a+b x^2}+\sqrt {b} \left (c+d x^2\right )}{\sqrt {c} \sqrt {-b c+a d}}\right )}{8 c^{5/2} (-b c+a d)^{5/2}} \]

[In]

Integrate[1/(Sqrt[a + b*x^2]*(c + d*x^2)^3),x]

[Out]

(d*x*Sqrt[a + b*x^2]*(-2*b*c*(4*c + 3*d*x^2) + a*d*(5*c + 3*d*x^2)))/(8*c^2*(b*c - a*d)^2*(c + d*x^2)^2) - ((8
*b^2*c^2 - 8*a*b*c*d + 3*a^2*d^2)*ArcTan[(-(d*x*Sqrt[a + b*x^2]) + Sqrt[b]*(c + d*x^2))/(Sqrt[c]*Sqrt[-(b*c) +
 a*d])])/(8*c^(5/2)*(-(b*c) + a*d)^(5/2))

Maple [A] (verified)

Time = 2.56 (sec) , antiderivative size = 149, normalized size of antiderivative = 0.91

method result size
pseudoelliptic \(\frac {-\frac {3 \left (d \,x^{2}+c \right )^{2} \left (a^{2} d^{2}-\frac {8}{3} a b c d +\frac {8}{3} b^{2} c^{2}\right ) \arctan \left (\frac {c \sqrt {b \,x^{2}+a}}{x \sqrt {\left (a d -b c \right ) c}}\right )}{8}+\frac {5 x \left (-\frac {8 b \,c^{2}}{5}+d \left (-\frac {6 b \,x^{2}}{5}+a \right ) c +\frac {3 a \,d^{2} x^{2}}{5}\right ) \sqrt {b \,x^{2}+a}\, d \sqrt {\left (a d -b c \right ) c}}{8}}{\sqrt {\left (a d -b c \right ) c}\, \left (a d -b c \right )^{2} c^{2} \left (d \,x^{2}+c \right )^{2}}\) \(149\)
default \(\text {Expression too large to display}\) \(1843\)

[In]

int(1/(b*x^2+a)^(1/2)/(d*x^2+c)^3,x,method=_RETURNVERBOSE)

[Out]

5/8/((a*d-b*c)*c)^(1/2)*(-3/5*(d*x^2+c)^2*(a^2*d^2-8/3*a*b*c*d+8/3*b^2*c^2)*arctan(c*(b*x^2+a)^(1/2)/x/((a*d-b
*c)*c)^(1/2))+x*(-8/5*b*c^2+d*(-6/5*b*x^2+a)*c+3/5*a*d^2*x^2)*(b*x^2+a)^(1/2)*d*((a*d-b*c)*c)^(1/2))/(a*d-b*c)
^2/c^2/(d*x^2+c)^2

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 412 vs. \(2 (143) = 286\).

Time = 0.49 (sec) , antiderivative size = 864, normalized size of antiderivative = 5.30 \[ \int \frac {1}{\sqrt {a+b x^2} \left (c+d x^2\right )^3} \, dx=\left [\frac {{\left (8 \, b^{2} c^{4} - 8 \, a b c^{3} d + 3 \, a^{2} c^{2} d^{2} + {\left (8 \, b^{2} c^{2} d^{2} - 8 \, a b c d^{3} + 3 \, a^{2} d^{4}\right )} x^{4} + 2 \, {\left (8 \, b^{2} c^{3} d - 8 \, a b c^{2} d^{2} + 3 \, a^{2} c d^{3}\right )} x^{2}\right )} \sqrt {b c^{2} - a c d} \log \left (\frac {{\left (8 \, b^{2} c^{2} - 8 \, a b c d + a^{2} d^{2}\right )} x^{4} + a^{2} c^{2} + 2 \, {\left (4 \, a b c^{2} - 3 \, a^{2} c d\right )} x^{2} + 4 \, {\left ({\left (2 \, b c - a d\right )} x^{3} + a c x\right )} \sqrt {b c^{2} - a c d} \sqrt {b x^{2} + a}}{d^{2} x^{4} + 2 \, c d x^{2} + c^{2}}\right ) - 4 \, {\left (3 \, {\left (2 \, b^{2} c^{3} d^{2} - 3 \, a b c^{2} d^{3} + a^{2} c d^{4}\right )} x^{3} + {\left (8 \, b^{2} c^{4} d - 13 \, a b c^{3} d^{2} + 5 \, a^{2} c^{2} d^{3}\right )} x\right )} \sqrt {b x^{2} + a}}{32 \, {\left (b^{3} c^{8} - 3 \, a b^{2} c^{7} d + 3 \, a^{2} b c^{6} d^{2} - a^{3} c^{5} d^{3} + {\left (b^{3} c^{6} d^{2} - 3 \, a b^{2} c^{5} d^{3} + 3 \, a^{2} b c^{4} d^{4} - a^{3} c^{3} d^{5}\right )} x^{4} + 2 \, {\left (b^{3} c^{7} d - 3 \, a b^{2} c^{6} d^{2} + 3 \, a^{2} b c^{5} d^{3} - a^{3} c^{4} d^{4}\right )} x^{2}\right )}}, -\frac {{\left (8 \, b^{2} c^{4} - 8 \, a b c^{3} d + 3 \, a^{2} c^{2} d^{2} + {\left (8 \, b^{2} c^{2} d^{2} - 8 \, a b c d^{3} + 3 \, a^{2} d^{4}\right )} x^{4} + 2 \, {\left (8 \, b^{2} c^{3} d - 8 \, a b c^{2} d^{2} + 3 \, a^{2} c d^{3}\right )} x^{2}\right )} \sqrt {-b c^{2} + a c d} \arctan \left (\frac {\sqrt {-b c^{2} + a c d} {\left ({\left (2 \, b c - a d\right )} x^{2} + a c\right )} \sqrt {b x^{2} + a}}{2 \, {\left ({\left (b^{2} c^{2} - a b c d\right )} x^{3} + {\left (a b c^{2} - a^{2} c d\right )} x\right )}}\right ) + 2 \, {\left (3 \, {\left (2 \, b^{2} c^{3} d^{2} - 3 \, a b c^{2} d^{3} + a^{2} c d^{4}\right )} x^{3} + {\left (8 \, b^{2} c^{4} d - 13 \, a b c^{3} d^{2} + 5 \, a^{2} c^{2} d^{3}\right )} x\right )} \sqrt {b x^{2} + a}}{16 \, {\left (b^{3} c^{8} - 3 \, a b^{2} c^{7} d + 3 \, a^{2} b c^{6} d^{2} - a^{3} c^{5} d^{3} + {\left (b^{3} c^{6} d^{2} - 3 \, a b^{2} c^{5} d^{3} + 3 \, a^{2} b c^{4} d^{4} - a^{3} c^{3} d^{5}\right )} x^{4} + 2 \, {\left (b^{3} c^{7} d - 3 \, a b^{2} c^{6} d^{2} + 3 \, a^{2} b c^{5} d^{3} - a^{3} c^{4} d^{4}\right )} x^{2}\right )}}\right ] \]

[In]

integrate(1/(b*x^2+a)^(1/2)/(d*x^2+c)^3,x, algorithm="fricas")

[Out]

[1/32*((8*b^2*c^4 - 8*a*b*c^3*d + 3*a^2*c^2*d^2 + (8*b^2*c^2*d^2 - 8*a*b*c*d^3 + 3*a^2*d^4)*x^4 + 2*(8*b^2*c^3
*d - 8*a*b*c^2*d^2 + 3*a^2*c*d^3)*x^2)*sqrt(b*c^2 - a*c*d)*log(((8*b^2*c^2 - 8*a*b*c*d + a^2*d^2)*x^4 + a^2*c^
2 + 2*(4*a*b*c^2 - 3*a^2*c*d)*x^2 + 4*((2*b*c - a*d)*x^3 + a*c*x)*sqrt(b*c^2 - a*c*d)*sqrt(b*x^2 + a))/(d^2*x^
4 + 2*c*d*x^2 + c^2)) - 4*(3*(2*b^2*c^3*d^2 - 3*a*b*c^2*d^3 + a^2*c*d^4)*x^3 + (8*b^2*c^4*d - 13*a*b*c^3*d^2 +
 5*a^2*c^2*d^3)*x)*sqrt(b*x^2 + a))/(b^3*c^8 - 3*a*b^2*c^7*d + 3*a^2*b*c^6*d^2 - a^3*c^5*d^3 + (b^3*c^6*d^2 -
3*a*b^2*c^5*d^3 + 3*a^2*b*c^4*d^4 - a^3*c^3*d^5)*x^4 + 2*(b^3*c^7*d - 3*a*b^2*c^6*d^2 + 3*a^2*b*c^5*d^3 - a^3*
c^4*d^4)*x^2), -1/16*((8*b^2*c^4 - 8*a*b*c^3*d + 3*a^2*c^2*d^2 + (8*b^2*c^2*d^2 - 8*a*b*c*d^3 + 3*a^2*d^4)*x^4
 + 2*(8*b^2*c^3*d - 8*a*b*c^2*d^2 + 3*a^2*c*d^3)*x^2)*sqrt(-b*c^2 + a*c*d)*arctan(1/2*sqrt(-b*c^2 + a*c*d)*((2
*b*c - a*d)*x^2 + a*c)*sqrt(b*x^2 + a)/((b^2*c^2 - a*b*c*d)*x^3 + (a*b*c^2 - a^2*c*d)*x)) + 2*(3*(2*b^2*c^3*d^
2 - 3*a*b*c^2*d^3 + a^2*c*d^4)*x^3 + (8*b^2*c^4*d - 13*a*b*c^3*d^2 + 5*a^2*c^2*d^3)*x)*sqrt(b*x^2 + a))/(b^3*c
^8 - 3*a*b^2*c^7*d + 3*a^2*b*c^6*d^2 - a^3*c^5*d^3 + (b^3*c^6*d^2 - 3*a*b^2*c^5*d^3 + 3*a^2*b*c^4*d^4 - a^3*c^
3*d^5)*x^4 + 2*(b^3*c^7*d - 3*a*b^2*c^6*d^2 + 3*a^2*b*c^5*d^3 - a^3*c^4*d^4)*x^2)]

Sympy [F(-1)]

Timed out. \[ \int \frac {1}{\sqrt {a+b x^2} \left (c+d x^2\right )^3} \, dx=\text {Timed out} \]

[In]

integrate(1/(b*x**2+a)**(1/2)/(d*x**2+c)**3,x)

[Out]

Timed out

Maxima [F]

\[ \int \frac {1}{\sqrt {a+b x^2} \left (c+d x^2\right )^3} \, dx=\int { \frac {1}{\sqrt {b x^{2} + a} {\left (d x^{2} + c\right )}^{3}} \,d x } \]

[In]

integrate(1/(b*x^2+a)^(1/2)/(d*x^2+c)^3,x, algorithm="maxima")

[Out]

integrate(1/(sqrt(b*x^2 + a)*(d*x^2 + c)^3), x)

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 538 vs. \(2 (143) = 286\).

Time = 1.74 (sec) , antiderivative size = 538, normalized size of antiderivative = 3.30 \[ \int \frac {1}{\sqrt {a+b x^2} \left (c+d x^2\right )^3} \, dx=-\frac {1}{8} \, b^{\frac {5}{2}} {\left (\frac {{\left (8 \, b^{2} c^{2} - 8 \, a b c d + 3 \, a^{2} d^{2}\right )} \arctan \left (\frac {{\left (\sqrt {b} x - \sqrt {b x^{2} + a}\right )}^{2} d + 2 \, b c - a d}{2 \, \sqrt {-b^{2} c^{2} + a b c d}}\right )}{{\left (b^{4} c^{4} - 2 \, a b^{3} c^{3} d + a^{2} b^{2} c^{2} d^{2}\right )} \sqrt {-b^{2} c^{2} + a b c d}} + \frac {2 \, {\left (8 \, {\left (\sqrt {b} x - \sqrt {b x^{2} + a}\right )}^{6} b^{2} c^{2} d - 8 \, {\left (\sqrt {b} x - \sqrt {b x^{2} + a}\right )}^{6} a b c d^{2} + 3 \, {\left (\sqrt {b} x - \sqrt {b x^{2} + a}\right )}^{6} a^{2} d^{3} + 48 \, {\left (\sqrt {b} x - \sqrt {b x^{2} + a}\right )}^{4} b^{3} c^{3} - 72 \, {\left (\sqrt {b} x - \sqrt {b x^{2} + a}\right )}^{4} a b^{2} c^{2} d + 42 \, {\left (\sqrt {b} x - \sqrt {b x^{2} + a}\right )}^{4} a^{2} b c d^{2} - 9 \, {\left (\sqrt {b} x - \sqrt {b x^{2} + a}\right )}^{4} a^{3} d^{3} + 40 \, {\left (\sqrt {b} x - \sqrt {b x^{2} + a}\right )}^{2} a^{2} b^{2} c^{2} d - 40 \, {\left (\sqrt {b} x - \sqrt {b x^{2} + a}\right )}^{2} a^{3} b c d^{2} + 9 \, {\left (\sqrt {b} x - \sqrt {b x^{2} + a}\right )}^{2} a^{4} d^{3} + 6 \, a^{4} b c d^{2} - 3 \, a^{5} d^{3}\right )}}{{\left (b^{4} c^{4} - 2 \, a b^{3} c^{3} d + a^{2} b^{2} c^{2} d^{2}\right )} {\left ({\left (\sqrt {b} x - \sqrt {b x^{2} + a}\right )}^{4} d + 4 \, {\left (\sqrt {b} x - \sqrt {b x^{2} + a}\right )}^{2} b c - 2 \, {\left (\sqrt {b} x - \sqrt {b x^{2} + a}\right )}^{2} a d + a^{2} d\right )}^{2}}\right )} \]

[In]

integrate(1/(b*x^2+a)^(1/2)/(d*x^2+c)^3,x, algorithm="giac")

[Out]

-1/8*b^(5/2)*((8*b^2*c^2 - 8*a*b*c*d + 3*a^2*d^2)*arctan(1/2*((sqrt(b)*x - sqrt(b*x^2 + a))^2*d + 2*b*c - a*d)
/sqrt(-b^2*c^2 + a*b*c*d))/((b^4*c^4 - 2*a*b^3*c^3*d + a^2*b^2*c^2*d^2)*sqrt(-b^2*c^2 + a*b*c*d)) + 2*(8*(sqrt
(b)*x - sqrt(b*x^2 + a))^6*b^2*c^2*d - 8*(sqrt(b)*x - sqrt(b*x^2 + a))^6*a*b*c*d^2 + 3*(sqrt(b)*x - sqrt(b*x^2
 + a))^6*a^2*d^3 + 48*(sqrt(b)*x - sqrt(b*x^2 + a))^4*b^3*c^3 - 72*(sqrt(b)*x - sqrt(b*x^2 + a))^4*a*b^2*c^2*d
 + 42*(sqrt(b)*x - sqrt(b*x^2 + a))^4*a^2*b*c*d^2 - 9*(sqrt(b)*x - sqrt(b*x^2 + a))^4*a^3*d^3 + 40*(sqrt(b)*x
- sqrt(b*x^2 + a))^2*a^2*b^2*c^2*d - 40*(sqrt(b)*x - sqrt(b*x^2 + a))^2*a^3*b*c*d^2 + 9*(sqrt(b)*x - sqrt(b*x^
2 + a))^2*a^4*d^3 + 6*a^4*b*c*d^2 - 3*a^5*d^3)/((b^4*c^4 - 2*a*b^3*c^3*d + a^2*b^2*c^2*d^2)*((sqrt(b)*x - sqrt
(b*x^2 + a))^4*d + 4*(sqrt(b)*x - sqrt(b*x^2 + a))^2*b*c - 2*(sqrt(b)*x - sqrt(b*x^2 + a))^2*a*d + a^2*d)^2))

Mupad [F(-1)]

Timed out. \[ \int \frac {1}{\sqrt {a+b x^2} \left (c+d x^2\right )^3} \, dx=\int \frac {1}{\sqrt {b\,x^2+a}\,{\left (d\,x^2+c\right )}^3} \,d x \]

[In]

int(1/((a + b*x^2)^(1/2)*(c + d*x^2)^3),x)

[Out]

int(1/((a + b*x^2)^(1/2)*(c + d*x^2)^3), x)